Immune-checkpoint blockade in combination of a novel oncolytic immunotherapeutic agent, CAVATAK™ (Coxsackievirus A21) significantly reduces tumor growth and tumor rechallenge.
Disclaimer

Certain statements made in this presentation are forward looking statements within the meaning of the safe harbour provisions of the United States Private Securities Litigation Reform Act of 1995. These forward looking statements are not historical facts but rather are based on Viralytics’ current expectations, estimates, assumptions and projections about the industry in which Viralytics operates. Material referred to in this document that use the words ‘estimate’, ‘project’, ‘intend’, ‘expect’, ‘plan’, ‘believe’, ‘guidance’ and similar expressions are intended to identify forward looking statements and should be considered an at-risk statement. These forward looking statements are not a guarantee of future performance and involve known and unknown risks and uncertainties, some of which are beyond the control of Viralytics or which are difficult to predict, which could cause the actual results, performance or achievements of Viralytics to be materially different from those which may be expressed or implied by these statements. These statements are based on our management’s current expectations and are subject to a number of uncertainties and risks that could change the results described in the forward-looking statements. Risks and uncertainties include, but are not limited to, general industry conditions and competition, general economic factors, the impact of pharmaceutical industry regulation and health care legislation in the United States and internationally, and challenges inherent in new product development. Investors should be aware that there are no assurances that results will not differ from those projected and Viralytics cautions shareholders and prospective shareholders not to place undue reliance on these forward-looking statements, which reflect the view of Viralytics only as of the date of this presentation. Viralytics is not under a duty to update any forward-looking statement as a result of new information, future events or otherwise, except as required by law or by any appropriate regulatory authority.’
Coxsackievirus A21: The basic facts

- “Common cold” virus
- Approximately 80-85% patients lack pre-existing neutralizing antibodies
- Non-enveloped *Picornavirus*
- A positive-strand RNA genome, ~7500 nt
- Viral capsid approximately 25 nm diameter
- Major cellular receptor is intercellular adhesion molecule-1 (ICAM-1)
- Rapid lytic cell infection
- Acid-resistant, stable in pH range 3.5-9.5

Cryo-EM CVA21-complexed with ICAM-1
CAVATAK™ (Coxsackievirus A21) an oncolytic immunotherapeutic agent

- Proprietary formulation of the bio-selected oncolytic virus, Coxsackievirus A 21
- Not genetically modified
- Targeted to specific receptor over expressed on cancer cells (human ICAM-1)
- Does NOT bind rodent ICAM-1
- Rapid cytoplasmic replication
- Kills local and metastatic cells by oncolytic and immunotherapeutic activity
- Potential application across a range of cancer types
 - Prostate, lung, melanoma, bladder and more
- Well tolerated in patients with to date no treatment-related grade 3 or 4 adverse events
- Potential application as monotherapy or with other new agents

Cytoplasmic replication of CVA21 in non-muscle invasive bladder cancer
CAVATAK™ (CVA21)
Oncolytic immunotherapeutic modes of action

Normal cells
- CVA21 has limited capacity to infect normal cells due to low levels of ICAM-1 expression
- Innate anti-viral defenses within normal cells are able to limit the spread of viral infection

Tumor cells
- CVA21 preferentially infects tumor cells expressing high levels of ICAM-1
- CVA21 replicates rapidly, rupturing the tumor cell. Progeny virus and tumor antigens are released
- Replicated viruses repeat the oncolytic process in nearby tumor cells
- Adaptive immune response identifies and destroys tumor cells via activated cytotoxic T-cells, even in the presence of anti-CVA21 neutralizing antibody
- Tumor cell lysis leads to cytokine release and immune cells are attracted to tumor sites.
- Dendritic cells process and present tumor antigens to mediate a tumor specific immune response.

CVA21
ICAM-1
Dendritic cell
Tumor cell
Normal cell
Anti-CVA21 antibody

Tumor Specific Antigens
Current CAVATAK™ (Coxsackievirus A21) clinical trial program

CAVATAK

Intratumoral Intravenous Intravesicular

VLA-007/008 (CALM study): Phase II multi-dose intratumoral CAVATAK in subjects with advanced melanoma
n=70, USA *(Dr Andtbacka, Tumor microenvironment, Oral 53)*

VLA-009 (STORM study): Phase I/II multi-dose intravenous CAVATAK in subjects with advanced melanoma, prostate, NSCLC or bladder cancer.
n=30-40, UK *(Dr Pandha, Clinical Trials II, Oral 51)*

VLA-012 (CANON study): Phase I intravesicular CAVATAK in subjects NON-muscle invasive Bladder cancer
n=30-40, UK *(Poster P5)*

VLA-013 (MITCI study): Phase Ib multi-dose intratumoral CAVATAK and intravenous ipilimumab (anti-CTLA-4) in subjects with advanced melanoma
n=30, USA
Oncolytic activity of intravenous and intratumoral CAVATAK in immune-deficient mice bearing pancreatic cancer xenografts

Female Balb-C SCID mice bearing (Panc-1-luc⁺ cells) were administered a single I.V or I.T injection of CAVATAK (~10⁷ TCID₅₀) or saline
Construction a immune-competent mouse model of melanoma (B16 cells) for challenge with Coxsackievirus A21

A

B

C

D

Palpable tumor growth 4 days post-administration of B16-ICAM-1 (2 x 10^6 cells)
Assessment of combination of intralesional CAVATAK and immune checkpoint antibody blockade (anti-PD-1) in an immune-competent C57BL mouse melanoma model

* B16-ICAM-1 cells are murine melanoma B16 cells stably transfected to express human ICAM-1 to allow CAVATAK binding and cell infection
Combination of intralesional CAVATAK and immune checkpoint antibody blockade (anti-PD-1)

Spider plot of Individual primary B16-ICAM-1 tumor growth*

- **Saline + Control Ab**
- **CVA21 + Control Ab**
- **Saline + anti-PD-1**
- **CVA21 + anti-PD-1**

Study Day 45:
- 0% Tumor-free
- 0% Tumor-free
- 0% Tumor-free
- 75% Tumor-free

B16-ICAM-1 (Primary treated tumor)

*Pseudo-Progression?
Combination of intralesional CAVATAK and immune checkpoint antibody blockade (anti-PD-1)

Incidence of palpable secondary B16 tumor *

- **Study day**
- **% incidence 2o tumor**

- **Saline + Control Ab**
- **Saline + anti-PD-1**
- **CVA21 + Control Ab**
- **CVA21 + anti-PD-1**

B16 cell re-challenge (Secondary tumor Non-treated)
Combination of intralesional CAVATAK and immune checkpoint antibody blockade (anti-PD-1)

Survival*

*, mice sacrificed due >20% weight loss, tumor burden >2500mm³, ulceration of primary or re-challenge tumors
Assessment of combination of intralesional CAVATAK and immune checkpoint antibody blockade (anti-CTLA-4) in an immune-competent C57BL mouse melanoma model

1. Implant B16-ICAM-1* cells into left flank
2. Treatment of primary tumour with CAVATAK or saline intratumoral (i.t) + anti-CTLA-4 or control mAb intraperitoneal (i.p)
3. Implant B16 cells into right flank

Day 0
7 10 13 16
37

B16-ICAM-1 cells (Primary tumor)
CAVATAK 1×10⁸ TCID₅₀ i.t
anti-CTLA-4 mAb 12.5 mg/kg
B16 cells re-challenge (Secondary tumor)

* B16-ICAM-1 cells are murine melanoma B16 cells stably transfected to express human ICAM-1 to allow CAVATAK binding and cell infection
Combination of intralesional CAVATAK and immune checkpoint antibody blockade (anti-CTLA-4)

Spider plot of Individual primary B16-ICAM-1 tumor growth*
Combination of intralesional CAVATAK and immune checkpoint antibody blockade (anti-CTLA-4)

Incidence of palpable secondary B16 tumor *

- **Saline + Control Ab**
- **Saline + anti-CTLA-4**
- **CVA21 + Control Ab**
- **CVA21 + anti-CTLA-4**
Combination of intralesional CAVATAK and immune checkpoint antibody blockade (anti-CTLA-4)

Survival*

* mice sacrificed due >20% weight loss, tumor burden >2500mm³, ulceration of primary or re-challenge tumors
Intravenous delivered CAVATAK-induced gene changes in human melanoma

- **Implant human SK-Mel 28 cells into left flank**

- **Treatment of tumor with CAVATAK or saline intravenous (i.v)**

- **Sacrifice mice and excise tumor post-treatment**

- **Day 0**
- **Day 14**

- **Excise tumor for viral and cellular gene profiling**

- **Tumor gene profiling**
CAVATAK-induced up regulation of IFN-γ inducible protein 10 (CXCL10) and PD-L1 in melanoma xenografts

CAVATAK-tumor replication kinetics

Tumor gene profiling

(HumanREf-8 v2 expression bead chips, illumina)

CXCL10 a chemokine secreted from cells exposed to IFN-γ and plays an important role in recruiting activated T-cells into sites of tissue inflammation
Assessment of combination of intravenous CAVATAK and immune checkpoint antibody blockade (anti-CTLA-4 and/or anti-PD-1) in an immune-competent C57BL mouse melanoma model

- **Implant B16-ICAM-1* cells into left flank**
- **Treatment of primary tumour with CAVATAK or saline intravenous (i.v) + anti-CTLA-4, anti-PD-1 or control mAb intraperitoneal (i.p)**
- **Implant B16 cells into right flank**

Day 0: 7, 10, 13, 16, 30

* B16-ICAM-1 cells are murine melanoma B16 cells stably transfected to express human ICAM-1 to allow CAVATAK binding and cell infection
Combination of intravenous CAVATAK and immune checkpoint antibody blockade (anti-CTLA-4 and/or anti-PD-1)

Spider plot of Individual primary B16-ICAM-1 tumor growth
Combination of intravenous CAVATAK and immune checkpoint antibody blockade (anti-CTLA-4 and/or anti-PD-1)

Incidence of palpable secondary B16 tumor

Days post tumor rechallenge

% incidence 2° tumour

Saline + Control Ab
anti-CTLA-4
anti-PD-1
CVA21 + Control Ab
anti-CTLA-4 + CVA21
anti-PD-1 + CVA21
anti-CTLA-4 + anti-PD-1 + CVA21

B16 cell re-challenge (Secondary tumor)
Combination of intravenous CAVATAK and immune checkpoint antibody blockade (anti-CTLA-4 and/or anti-PD-1)

Survival proportions: Saline vs anti-PD-1 + CVA21

Survival proportions: Saline vs anti-CTLA-4 + CVA21

Survival proportions: Saline vs anti-CTLA-4 + anti-PD-1 + CVA21

*, mice sacrificed due >20% weight loss, tumor burden >2500mm³, ulceration of primary or re-challenge tumors
Combination of intravenous CAVATAK and immune checkpoint antibody blockade (anti-CTLA-4 and/or anti-PD-1)

Survival proportions: anti-CTLA-4 vs anti-CTLA-4 + CVA21

- Survival proportion: anti-CTLA-4
- Survival proportion: anti-CTLA-4 + CVA21

*p = 0.1624

Survival proportions: anti-PD-1 vs anti-PD-1 + CVA21

- Survival proportion: anti-PD-1
- Survival proportion: anti-PD-1 + CVA21

**p < 0.0074

Survival proportions: anti-CTLA-4 vs anti-CTLA-4 + anti-PD-1 + CVA21

- Survival proportion: anti-CTLA-4
- Survival proportion: anti-CTLA-4 + anti-PD-1 + CVA21

**p < 0.0041

Survival proportions: anti-PD-1 vs anti-CTLA-4 + anti-PD-1 + CVA21

- Survival proportion: anti-PD-1
- Survival proportion: anti-CTLA-4 + anti-PD-1 + CVA21

****p < 0.0001

*, mice sacrificed due >20% weight loss, tumor burden >2500mm3, ulceration of primary or re-challenge tumors
• Following gross examination, CAVATAK and anti-PD-1 or anti-CTLA-4 mAb combination treatment appears to be generally well tolerated

• Significant anti-tumor activity using a combination of CAVATAK (intratumoral or intravenous) and anti-PD-1 or anti-CTLA-4 mAbs in a pre-clinical animal model of melanoma

• The current model provides capacity to assess different sequences of CAVATAK, anti-PD-1 or anti-CTLA-4 mAbs administration.

• Clinical evaluation of a combination of CAVATAK and PD-1 or CTLA-4 blockade in advanced cancer patients with ICAM-1 expression solid tumors is warranted.
Acknowledgements

Viralytics Clinical and Research Development team

Roberta Karpathy
Bronwyn Davies
Jackie Burgess
Rebecca Ingham
Susanne Johansson
Penny Yates
Robert Herd
Richard Barry