Phase II CALM extension study: Enhanced immune-cell infiltration within the tumour micro-environment of patients with advanced melanoma following intralesional delivery of Coxsackievirus A21

Robert Hans Ingemar Andtbacka, Brendan Curti, Sigurn Hallmeyer, Karl Zhou, Zipei Feng, Christopher Pauslitan, Carlo Bilulco, Bernard Fox, Roberta Karpathy, Jeffrey Ira Weisberg, Bronwyn Davies, Darren Shafren

Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Providence Cancer Center, Portland, OR; OncoLOGY Specialists SC, Park Ridge, IL; in/vent Health Clinical, Princeton, NJ; Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR; Viralytics Limited, Sydney, Australia.

ESMO 2023, September 25-29, Vienna, AUSTRIA. Corresponding author: Robert Andtbacka; robert.andtbacka@hci.utah.edu

Introduction

Coxsackievirus A21 (CVA21), following intratumoral (IT) injection, CVA21 preferably infects CTLA4 expressing tumor cells, resulting in viral replication, cell lysis, and a systemic antitumor immune response. The Phase I/CAI study investigated the efficacy and safety of IT CVA21 in a phase with advanced melanoma. The primary endpoint of the study was achieved with 23 of 57 (38.6%) evaluable patients experiencing at least a partial response (CR+PR) or stable disease (SD) at 26 weeks. The results of a phase II extension study detailed in this abstract showed that CVA21 treatment induced notable changes within the tumor microenvironment of patients with melanoma to reconstitute the immune-cell infiltrate within the tumor microenvironment.

Study Design

Preliminary Data

Patient Response Data

<table>
<thead>
<tr>
<th>Patient</th>
<th>Treatment</th>
<th>Follow-up</th>
<th>Time</th>
<th>Best Overall Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt04</td>
<td>Ipilimumab</td>
<td>12 months</td>
<td>23.4</td>
<td>CR</td>
</tr>
<tr>
<td>Pt04</td>
<td>Pembrolizumab</td>
<td>12 months</td>
<td>23.4</td>
<td>CR</td>
</tr>
</tbody>
</table>

Conclusions

- CVA21 treatment induced notable changes within the tumor microenvironment by inducing increases in immune cell infiltration and expression of PD-L1.
- CVA21 treatment induces a Th1 gene shift, with increases in interferon-induced genes.
- The observation of CVA21-induced immune cell infiltration in injected melanoma lesions suggests that combination of this treatment with checkpoint inhibitors such as anti-CTLA4 and/or anti-PD1 might result in enhanced antitumor activity, as was shown in preclinical murine models.

Future Directions

- Clinical evaluation of the activity of intralesional injection of CVA21 in combination with systemic administration of checkpoint inhibitors in patients with unresectable melanomas is currently underway (Phase II METCO study; ClinicalTrials.gov identifier: NCT03276146).
- CVA21 treatment may be used in a rescue strategy to reconstitute the immune cells within the tumor microenvironment of lesions resistant to immune checkpoint blockade.

Coxsackievirus A21 reconstitutes immune cells in the micro-environment of melanoma lesions from patients previously treated with multiple lines of immune checkpoint blockade

Graphical Abstract

Image showing the reconstitution of immune cells in the micro-environment of melanoma lesions following CVA21 treatment.