Phase II CALM Extension study: Intratumoral CAVATAK™ increases immune-cell infiltrates and up-regulates immune-checkpoint molecules in the microenvironment of lesions from advanced melanoma patients

1Huntsman Cancer Institute, Salt Lake City, UT; 2Providence Cancer Center, Portland, OR; 3Oncology Specialists, Chicago, IL; 4Earle A Chiles Research Institute Providence Cancer Center, Portland, OR; 5Viralytics Limited, New Lambton, Australia; 6Viralytics Limited, Sydney, Australia
Disclaimer

Certain statements made in this presentation are forward looking statements within the meaning of the safe harbour provisions of the United States Private Securities Litigation Reform Act of 1995. These forward looking statements are not historical facts but rather are based on Viralytics’ current expectations, estimates, assumptions and projections about the industry in which Viralytics operates. Material referred to in this document that use the words ‘estimate’, ‘project’, ‘intend’, ‘expect’, ‘plan’, ‘believe’, ‘guidance’ and similar expressions are intended to identify forward looking statements and should be considered an at-risk statement. These forward looking statements are not a guarantee of future performance and involve known and unknown risks and uncertainties, some of which are beyond the control of Viralytics or which are difficult to predict, which could cause the actual results, performance or achievements of Viralytics to be materially different from those which may be expressed or implied by these statements. These statements are based on our management’s current expectations and are subject to a number of uncertainties and risks that could change the results described in the forward-looking statements. Risks and uncertainties include, but are not limited to, general industry conditions and competition, general economic factors, the impact of pharmaceutical industry regulation and health care legislation in the United States and internationally, and challenges inherent in new product development. Investors should be aware that there are no assurances that results will not differ from those projected and Viralytics cautions shareholders and prospective shareholders not to place undue reliance on these forward-looking statements, which reflect the view of Viralytics only as of the date of this presentation. Viralytics is not under a duty to update any forward-looking statement as a result of new information, future events or otherwise, except as required by law or by any appropriate regulatory authority.'
Coxsackie virus A21: The basic facts

- “Common cold” virus
- Approximately 80-85% patients lack pre-existing neutralizing antibodies
- Non-enveloped *Picornavirus*
- A positive-strand RNA genome, ~7500 nt
- Viral capsid approximately 25 nm diameter
- Major cellular receptor is intercellular adhesion molecule-1 (ICAM-1)
- Rapid lytic cell infection
- Acid-resistant, stable in pH range 3.5-9.5
Coxsackievirus A21 (CVA21) an oncolytic immunotherapeutic agent

- Proprietary formulation of the bio-selected oncolytic virus, Coxsackievirus A 21
- Not genetically modified
- Targeted to specific receptor over expressed on cancer cells (human ICAM-1)
- Does NOT bind rodent ICAM-1
- Rapid cytoplasmic replication
- Kills local and metastatic cells by oncolytic and immunotherapeutic activity
- Potential application across a range of cancer types
 - Prostate, lung, melanoma, bladder and more
- Well tolerated in patients with to date no treatment-related grade 3 or 4 adverse events
- Potential application as monotherapy or with other new agents
Coxsackievirus A21
Oncolytic immunotherapeutic modes of action

CVA21 has limited capacity to infect normal cells due to low levels of ICAM-1 expression.

CVA21 preferentially infects tumor cells expressing high levels of ICAM-1.

CVA21 replicates rapidly, rupturing the tumor cell. Progeny virus and tumor antigens are released.

Adaptive immune response identifies and destroys tumor cells via activated cytotoxic T-cells, even in the presence of anti-CVA21 neutralizing antibody.

Tumor cell lysis leads to cytokine release and immune cells are attracted to tumor sites.

Dendritic cells process and present tumor antigens to mediate a tumor specific immune response.
Phase II CALM study: Study Design*

Phase 2: CALM study design

(CAVATAK in Late Stage Melanoma)

- 57 Stage IIIIC and IV melanoma patients at least 1 injectable lesion
- 10 series of multi-intratumoral CVA21 injections (up to 3×10^8 TCID$_{50}$)
 Day 1,3,5,8,22,43,64,85,106,127

Day 169 (w24) irPFS
Primary endpoint (≥ 22.5%)
 [irCR, irPR, irSD]

- If irCR, irPR, irSD or irPD unconfirmed eligible for 9 cycles of multi-intratumoral CVA21 injections q21 days

- Eligible for extension study? Yes/No
 - Yes
 - irPD confirmed
 - Observation only
 - Patient completes or declines extension study or irPD confirmed

- No
Phase II CALM study: Patient Response Data

<table>
<thead>
<tr>
<th>Primary endpoint</th>
<th>Secondary endpoints</th>
</tr>
</thead>
<tbody>
<tr>
<td>irPFS 6 months (CR+PR+SD)</td>
<td>Overall response rate* (CR+PR, irRECIST 1.1):</td>
</tr>
<tr>
<td></td>
<td>Durable response rate+</td>
</tr>
<tr>
<td></td>
<td>Median Time to response onset</td>
</tr>
<tr>
<td></td>
<td>Median irPFS</td>
</tr>
<tr>
<td></td>
<td>Median Overall survival</td>
</tr>
<tr>
<td></td>
<td>1-year survival rate:</td>
</tr>
</tbody>
</table>

* | 28.1% (16/57 pts) [8CR + 8PR] # |
+ | 21.1% |
| 3.4 months (95% CI: 1.5, 4.2) |
| 5.7 months (95% CI: 2.8, 11.1) |
| 26.7 months (95% CI: 17.4, 34.5) |
| 75.4% (43/57 pts) |

* Investigator assessed
3 CR responses unconfirmed at time of data cut-off
Durable response is a response lasting continuously for ≥ 6 months as assessed by irRECIST 1.1 criteria
Phase II CALM study: Best Percentage changes in non-injected target lung and liver lesions*

Best percentage change in individual target lung and liver lesions compared to baseline

- Lung lesions
- Liver lesions
- CALM extension cohort

SD or PR = 62.5%
PR = 37.5%
Phase II CALM study: Overall survival
Durable responder versus Non-responder

Study Days

Percent survival

Study Days

Durable responder
Non-responder
Phase II CALM extension study

Phase 2: CALM study design
(CAVATAK in Late Stage Melanoma)

57 Stage IIIC and IV melanoma patients at least 1 injectable lesion

10 series of multi-intratumoral CVA21 injections (up to 3x10^3 TCID₅₀)
Day 1, 3, 5, 8, 22, 43, 64, 85, 106, 127

Day 169 (w24) iRFDS
Primary endpoint (≥ 22.5%)
[irCR, irPR, irSD]

irCR, irPR, irSD or irPD unconfirmed eligible for 9 cycles of multi-intratumoral CVA21 injections q21 days

Yes

Eligible for extension study?

No

irPD confirmed

Observation only

patient completes/declines extension study or irPD confirmed

Extension Cohort
13 Stage IIIC and IV melanoma patients, Mandatory pre/post Treatment biopsy of at least 1 lesion
Phase II CALM-ext study: Multispectral Analysis

Pt 04-015

Female: Stage IIIC with melanoma to legs
Prior treatment with ipilimumab and pembrolizumab

Pt 03-043

Male: Stage IIIC with melanoma to the feet
Prior treatment with surgery

Day 0: Pre-treatment
Day 8: Post-treatment
CVA21-induces up-regulation of immune response genes in the micro-environment of melanoma lesions: NanoString digital RNA counts are normalized across each experiment relative to the expression of 40 housekeeping genes.
Phase II CALM-ext study: Changes in key immune checkpoint genes in CVA21 injected melanoma lesion (NanoString digital RNA counting)
Phase II CALM-ext study: Best CVA21 injected lesion response*

- Progression
- Disease control (CR + PR+ SD)

Percentage change from baseline to final tumor measurement

Patient Identification

03-045, 03-042, 03-043, 03-044, 03-048

* First response assessment at day 42
Phase II CALM-ext study: Levels of T-cell infiltrates and PD-L1 expression in progressing and disease control injected lesions

![Graph showing CD3+CD8+ and PD-L1+ cells/mm² over different days and treatment groups.](image-url)
Phase II CALM-ext study: Levels of viral RNA response and γ-interferon induced gene expression in progressing and disease control injected lesions.

Progression

- Patients (n=3)

Disease Control

- Patients (n=6)
Phase II CALM-ext study: Levels of **immune-checkpoint inhibitory gene expression** in progressing and disease control injected lesions.
Phase II CALM-ext study: Levels of **immune-checkpoint stimulatory gene expression** in progressing and disease control injected lesions

Progression

<table>
<thead>
<tr>
<th>Protein</th>
<th>Progression</th>
<th>Disease Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD40L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD122</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-1BB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OX-40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OX-40L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GITR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICOS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Change in RNA expression, relative units at Day 8 compared to Day 0
CD122 is the β-component of the IL-2 receptor complex

Increased expression of CD122, a potential marker for enhanced anti-tumor activity of CTLA-4 blockade

Hannani et al; 2015, Cell Research 25:208–224
VLA-013 MITCI Phase 1b Study Design

(\textit{MELANOMA INTRA-TUMORAL CAVATAK AND IPILIMUMAB})

- **1° end-point**: Safety
- **2° endpoint**: Response (irWHO criteria).

26 Stage IIIIC and IV melanoma patients at least 1 injectable lesion

CVA21 intralesional

\[3 \times 10^8 \text{TCID}_{50} \text{ Day 1,3,5,8 and 22 then Q3W till Day 358}\]

Ipilimumab 3 mg/kg IV Q3W x 4

- Day 1
- Day 22
VLA-013 MITCI Phase 1b: Injected lesion Response

Best percentage change in the lesions cross product relative to baseline

ipi-N = ipilimumab naive
ipi-R = ipilimumab refractory
VLA-013 MITCI Phase 1b: Non-injected lesion response

Best percentage change in the lesions cross product relative to baseline

ipi-N
ipi-R
non-injected
VLA-013 MITCI Phase 1b: Best Overall Response

Best percentage change in the lesions cross product relative to baseline irRC

-100 -75 -50 -25 0 25 50 75 100

IIIC IV M1a IV M1b IV M1c

* Prior ipilimumab
+ Prior anti-PD1 or PD-L1
VLA-013 MITCI Phase 1b: Response by stage

- **Study days**: 0, 50, 100, 150, 200, 250, 300
- **Best percentage change in the lesions cross product relative to baseline**

Graph Legend
- **IIIc**: Green line
- **IV M1a**: Orange line
- **IV M1c**: Red line

Ipilimumab
- **3 mg/kg IV Q3W x 4**
VLA-013 MITCI Phase 1b Study: Partial tumor response Stage IV M1c (Pt 13-12003)
VLA-013 MITCI Phase 1b Study: Complete tumor response Stage IV M1a (Pt 13-04002)

Pre-treatment vs Post-treatment (day 190)
VLA-013 MITCI Phase 1b Study: Complete tumor response Stage IIIC (Pt 13-5001*)

Baseline

1 month

3 months

6 months

* Progression on prior anti-PD1 treatment (nivolumab)
Conclusions and Future Directions

• CVA21 treatment facilitated notable changes within the tumor microenvironment by inducing increases in immune cell infiltrates (CD3+CD8+) and expression of PD-L1, in particular within lesions displaying stable disease or response.

• CVA21 treatment significantly up-regulated a number of interferon-response and immune checkpoint inhibitory genes in injected melanoma lesions, including CXCL10, CXCL11, CTLA-4, PD-L1, LAG-3, TIM-3 and IDO.

• CVA21 treatment can potentially increase the “immunological heat” within the tumor microenvironment.

• The CVA21-ipilimumab combination immunotherapy treatment is generally well tolerated and has displayed anti-tumor activity in local, regional and distant systemic disease.

• The preliminary data confirmed overall response rate (80%) in ipilimumab naïve patients is higher than published rates for either agent used alone.

• Up-regulation of immune cell infiltrates and/or immune checkpoint inhibitory molecules in CVA21-treated lesions may be predictive of future tumor response, particularly in combination with immune checkpoint blockade strategies.
Many thanks to:

• The CALM and MITCI study patients and families
• CALM study investigators
• MITCI study investigators
• CALM and MITCI study Clinical Trials Research Staff
• Viralytics Clinical Development team