Phase I/II CANON study
Oncolytic immunotherapy for the treatment of non-muscle invasive bladder cancer using intravesical Coxsackievirus A21

Hardev Pandha
University of Surrey, Guildford, United Kingdom
Non-muscle invasive (superficial) bladder cancer

• High incidence, high prevalence
• Lifelong surveillance, hence high cost
• BCG immunotherapy for high grade: good response, ‘fails’ in 40% patients within 2 years
• 15% develop invasive disease
• Complex immune response
• Mitomycin C, adjuvant, low grade dose
Non-muscle invasive (superficial) bladder cancer
Coxsackievirus A21 (CVA21)

Genus: Picornaviridae

Polioviruses

Coxsackie A viruses

Coxsackie B viruses

Echoviruses

Enteroviruses

- Replicate mainly in the gut
- Single stranded naked RNA virus
- Capsid has 60 copies each of 4 proteins, VP1, VP2, VP3 and VP4, arranged with icosahedral symmetry around a positive sense genome

ICAM-1 (CD54) is primary receptor for attach/internalisation

DAF (CD55) co receptor, virus attachment
Susceptibility of bladder cancer cell lines to CVA21 infection
Expression profile of surface ICAM-1 and DAF on bladder cancer cell lines

A

T24

TCCSUP

5637

KU19-19

VMCUB

RT112

ICAM-1 positive

Whole population

ICAM-1 negative

B

ICAM-1 PGE Molecules/cell

C

Percentage Survival (%)

CVA21 MOI

ICAM-1
Synergistic effect of combination treatment with CVA21 and Mitomycin C
Mitomycin C up-regulates ICAM-1 expression.
Increasing viral replication after MMC exposure

![Graphs showing viral replication in different cell lines over time.](image-url)
Effect of low dose 0.5 ug/ml MMC on gene expression in 5637 cell line
Apoptotic cell death pathway induced by CVA21.
ICD marker induction by CVA21 and in combination

A

T24

MFI: Calreticulin

24 Hours 48 Hours 72 Hours

5637

MFI: Calreticulin

24 Hours 48 Hours 72 Hours

B

T24

HMGB1 conc (ng/ml)

24 Hours 48 Hours 72 Hours

TCCSUP

24 Hours 48 Hours 72 Hours

5637

24 Hours 48 Hours 72 Hours
CVA21-induced ICD effectively vaccinates mice
ICAM-1 expression in NMIBC
Enhanced cytotoxicity of mitomycin C and CVA21 on bladder cancer tumour slices

A

Normal bladder	Original bladder biopsy	Untreated slice
MitC 0.5 µg/ml | CVA21 5x10^6 | MitC 0.5 µg/ml + CVA21 5x10^6

B

-ve control: no TdT enzyme	Original Bladder biopsy	Untreated slice
MitC 0.5µg/ml | CVA21 5x10^6 | MitC 0.5µg/ml + CVA21 5x10^6
Immune profiling of NMIBC Versus normal bladder by nanostring
CANON study schema

Screen photo CVA21 TUR surgery Histology

D-7 D1 D2 D3 D4 D5 D8
Cohort A1
Day 1
CVA21 (1x10^8 TCID_{50})
n=3

Intravesicular instillation of CVA21 in 30 mL saline on Day 1 and/or Day 2
Transurethral resection (TUR) Day 8-11

Cohort B1
Day 1
CVA21 (3x10^8 TCID_{50}) +
Day 1
mitomycin C (10 mg)
n=3

Primary
Patient safety and tolerability
• Determination of MTD

Secondary
• Evidence of anti-tumor activity
• Virus-induced tumor cell infiltrates and immune response in TUR tissue
• Level of viral replication in TUR tissue
• Pharmacokinetics of serum viral load and anti-CVA21 antibodies
• Viral excretion in blood and urine

Cohort A2
Day 1
CVA21 (3x10^8 TCID_{50})
n=3

Cohort B2
Day 1 and 2
CVA21 (3x10^8 TCID_{50}) +
Day 1
mitomycin C (10 mg)
n=3

Cohort A3
Day 1 and 2
CVA21 (3x10^8 TCID_{50})
n=3

Study Endpoints

VLA-012B
(mitomycin-C combination)

VLA-012A (Monotherapy)

16 subjects with Non-muscle invasive Bladder cancer
<table>
<thead>
<tr>
<th>Cohort</th>
<th>Patient Identification Code</th>
<th>CVA21 Dose (TCID<sub>50</sub>)</th>
<th>Mitomycin C Dose</th>
<th>Age</th>
<th>Gender</th>
<th>Pathology Finding at TUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>01-B001</td>
<td>1 x 10<sup>8</sup></td>
<td>-</td>
<td>62</td>
<td>F</td>
<td>G1 pTa papillary urothelial carcinoma</td>
</tr>
<tr>
<td></td>
<td>01-B003</td>
<td>1 x 10<sup>8</sup></td>
<td>-</td>
<td>62</td>
<td>M</td>
<td>G2 pTa transitional cell carcinoma</td>
</tr>
<tr>
<td></td>
<td>01-B004</td>
<td>1 x 10<sup>8</sup></td>
<td>-</td>
<td>77</td>
<td>F</td>
<td>G3 transitional cell carcinoma with sarcomatoid component, at least pT3</td>
</tr>
<tr>
<td>A2</td>
<td>01-B005</td>
<td>3 x 10<sup>8</sup></td>
<td>-</td>
<td>83</td>
<td>M</td>
<td>G3 pTa low grade papillary transitional cell carcinoma</td>
</tr>
<tr>
<td></td>
<td>01-B006</td>
<td>3 x 10<sup>8</sup></td>
<td>-</td>
<td>63</td>
<td>M</td>
<td>G3 pT1 papillary bladder cancer</td>
</tr>
<tr>
<td></td>
<td>01-B007</td>
<td>3 x 10<sup>8</sup></td>
<td>-</td>
<td>50</td>
<td>M</td>
<td>G3 pTa papillary</td>
</tr>
<tr>
<td>A3</td>
<td>01-B008</td>
<td>3 x 10<sup>8</sup></td>
<td>3 x 10<sup>8</sup></td>
<td>67</td>
<td>M</td>
<td>no malignant cells present</td>
</tr>
<tr>
<td></td>
<td>01-B009</td>
<td>3 x 10<sup>8</sup></td>
<td>3 x 10<sup>8</sup></td>
<td>58</td>
<td>M</td>
<td>G1 Ta papillary transitional epithelium</td>
</tr>
<tr>
<td></td>
<td>01-B010</td>
<td>3 x 10<sup>8</sup></td>
<td>3 x 10<sup>8</sup></td>
<td>77</td>
<td>M</td>
<td>G3 pTa transitional cell carcinoma</td>
</tr>
<tr>
<td>B1</td>
<td>01-B011</td>
<td>1 x 10<sup>8</sup></td>
<td>1 x 10<sup>8</sup></td>
<td>10 mg</td>
<td>73</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>01-B012</td>
<td>1 x 10<sup>8</sup></td>
<td>1 x 10<sup>8</sup></td>
<td>10 mg</td>
<td>68</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>01-B013</td>
<td>1 x 10<sup>8</sup></td>
<td>1 x 10<sup>8</sup></td>
<td>10 mg</td>
<td>51</td>
<td>F</td>
</tr>
<tr>
<td>B2</td>
<td>01-B015</td>
<td>3 x 10<sup>8</sup></td>
<td>3 x 10<sup>8</sup></td>
<td>10 mg</td>
<td>67</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>01-B016</td>
<td>3 x 10<sup>8</sup></td>
<td>3 x 10<sup>8</sup></td>
<td>10 mg</td>
<td>61</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>01-B017</td>
<td>3 x 10<sup>8</sup></td>
<td>3 x 10<sup>8</sup></td>
<td>10 mg</td>
<td>56</td>
<td>M</td>
</tr>
</tbody>
</table>
CVA21-related adverse events

<table>
<thead>
<tr>
<th>AE terminology</th>
<th>grade 1</th>
<th>grade 2</th>
<th>grade 3</th>
<th>grade 4</th>
<th>grade 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abdominal/discomfort</td>
<td>1(7%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Shivers/feeling cold</td>
<td>1(7%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Haematuria</td>
<td>1(7%)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
CVA21 detection in urine

CANON trial Pt. 01B/001
1x10^8 TCID₅₀ infused on Day 1

RNA copies/ml

TCID₅₀/ml

Day
Levels of CVA21 viral RNA and live virus in patient urine after CVA21 treatment
CVA21 viral proteins

H&E staining

Apoptotic cell staining

CVA21 viral protein staining, Red=CVA21 proteins; Blue=Nucleus. H&E stain, black arrows indicate apoptotic bodies. Apoptotic cell staining, brown cells represent cleaved caspase-3 staining by IHC.
Response Data

Figure 1. Tumor Response: Pre and post treatment cystoscopy

Cohort 1:
Pt 01-B001

Pre-treatment
Post-treatment Day 8

Surface hemorrhage and inflammation of the tumor

Cohort 3:
Pt 01-B008

Complete clinical response (confirmed by histopathology)
HMGB-1 levels in urine
Urinary cytokine levels

Q-plex human cytokine Screen (16-plex, Quansys)
NMIBC untreated

Image ID

<table>
<thead>
<tr>
<th></th>
<th>IM3-4 C</th>
<th>IM3-5 A</th>
<th>IM3-8 B</th>
</tr>
</thead>
</table>

PD-L1 CD3 CD8 FoxP3 CD163 CK DAPI
NMIBC untreated

<table>
<thead>
<tr>
<th>Image ID</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>IM3-5</td>
<td>A</td>
</tr>
<tr>
<td>IM3-0</td>
<td>B</td>
</tr>
<tr>
<td>IM3-4</td>
<td>C</td>
</tr>
</tbody>
</table>
CVA21-treated
01-B004 patient
Complete responder

<table>
<thead>
<tr>
<th>Image ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>IM3-2-A</td>
</tr>
<tr>
<td>IM3-12-C</td>
</tr>
<tr>
<td>IM3-5-B</td>
</tr>
</tbody>
</table>
CVA21-treated
01-B004 patient

<table>
<thead>
<tr>
<th>Image ID</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IM3-1-A</td>
<td></td>
</tr>
<tr>
<td>IM3-10-B</td>
<td>IM3-9-C</td>
</tr>
</tbody>
</table>

Immunofluorescence Staining:
- **PD-L1**
- **CD3**
- **CD8**
- **FoxP3**
- **CD163**
- **CK**
- **DAPI**
Quantitation Multispectral imaging

12579-1 Untreated (Tumor)

14281-1 Untreated (Tumor)

Pt-B004-treated (Tumor)

Pt 01/B008 Treated (Stroma)
Conclusions and Future Directions

- Proof of concept viral targeting, replication and tumor cell death following a single or multiple intravesicular administrations of CVA21 was achieved in patients from monotherapy Cohorts A1, A2, A3 and mitomycin-C combination Cohorts B1, B2.

- Clinical activity of CVA21 demonstrated by complete tumor response, viral mediated cell apoptosis, viral replication (infectious virus increases in urine and notable signs of viral-induced tumor inflammation.

- Single agent and CVA21-combination treatments facilitated notable changes within the NMIBC tissue by inducing increases in immune cell infiltrates (CD3+CD8+) and expression of PD-L1 compared to untreated NMIBC controls.

- CVA21 mediated increases in “immunological heat” within the tumor micro-environment with regards to immune-cell infiltrates and up-regulation of immune checkpoint molecules suggest possible increased anti-tumor activity when used in combination with immune checkpoint blockade strategies.

- No evidence of systemic spread of CVA21 or development of anti-CVA21 serum neutralizing antibody.

- Intravesicular administration of CVA21 as a single agent or in combination with mitomycin-C was generally well tolerated with no Grade 2,3 or 4 product-related AE’s.

- The observed tumor targeting, viral replication is likely to provide a strong signal in generating both a strong local and systemic anti-tumor immune response.
Acknowledgements

Surrey
Nicola Annels
Guy Simpson
Mehreen Arif
Sarbinder Sandhu
Hugh Mostafid
Diane Portelly
Helen Gregory

Univ Leeds
Prof Alan Melcher (ICR)
Fiona Errington
Liz Illet
Olly Donnelly
Vicky Jennings

Inst Cancer Research
Prof Kevin Harrington
David Mansfield
Vicky Roulestone

Mayo Clinic
Prof Richard Vile
Tim Kottke
Nicolas Boisgerault
Memy Diaz
Jose Pulido

Viralytics Ltd
Darren Shafren
Mark Grose
Gough Au
Robert Karpathy
Bronwyn Davies

Earl Chiles Inst
Bernie Fox
Carmen.Ballesteros-Merino
Carlo Bifulco

Funders

RingRose Foundation