Phase 1b KEYNOTE-200 (STORM): A study of an intravenously delivered oncolytic virus, Coxsackievirus A21 in combination with pembrolizumab in advanced cancer patients

Hardev S. Pandha1, Kevin J. Harrington2, Christy Ralph3, Alan Melcher2, Brendan Curti4, Rachel Sanborn4, Charles Rudin5, Jonathan Rosenberg6, Sumati Gupta6, Wallace Akerly6, Emmett Schmidt7, David Kaufman7, Mark Grose8, Bronwyn Davies8, Roberta Karpathy8, Darren Shafren8

1 University of Surrey, Surrey, UK; 2 Institute of Cancer Research and Royal Marsden Hospital, London, UK; 3 Institute of Oncology, St. James’s University Hospital, Leeds, UK; 4 Earle A. Chiles Research Institute, Providence Cancer Center, Portland, OR; 5 Memorial Sloan Kettering Cancer Center, NY; Huntsman Cancer Center, Salt Lake City, UT; 7 Merck & Co., Inc., Kenilworth, NJ; 8 Viralytics Limited, Sydney, Australia
Disclosures

Charles Rudin, MD PhD

I have the following financial relationships to disclose:

• Consultant:
 • Abbvie, BMS, Celgene, G1 Therapeutics, Novartis

• Scientific advisory board:
 • Harpoon Therapeutics

I will discuss the following off label use and/or investigational use in my presentation: CVA21
CAVATAK® (Coxsackievirus A21) an oncolytic immunotherapeutic agent

- Proprietary formulation of the oncolytic virus, Coxsackievirus A21 (CVA21)
 - Unmodified “common cold” virus
- Targeted to ICAM-1
 - Over-expressed on cancer cells
- High level of patients without pre-existing CVA21 immunity
 - 88% (132/150 pts) lacking anti-CVA21 serum antibody at baseline
- Rapid cytoplasmic replication
 - Kills by oncolytic and immunotherapeutic activity
- Potential application across a range of cancer types
 - Prostate, lung, melanoma, bladder and others
- Potential application as combination with other immunotherapies

Cytoplasmic replication of CVA21 in non-muscle invasive bladder cancer
Preclinical: Intravenous delivered CVA21-induced gene changes in human melanoma

- **Implant human SK-Mel 28**
- **Treatment**: CAVATAK or saline
- **Day 0**: SCID Balb/C
- **Day 14**: CAVATAK or saline IV (tail vein)
- **Sacrifice mice and excise tumor**
 - 3h, 6h, 24h, 72h
- **Excise tumor for viral and cellular gene profiling**
- **Tumor gene profiling**
Preclinical: CVA21-induced up regulation of IFN-γ inducible protein 10 (CXCL10) and PD-L1 in melanoma xenografts

Tumor gene expression

Saline

<table>
<thead>
<tr>
<th>Time post-saline administration (h)</th>
<th>Normalised gene fold changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3h</td>
<td>1.00</td>
</tr>
<tr>
<td>6h</td>
<td>1.00</td>
</tr>
<tr>
<td>24h</td>
<td>1.00</td>
</tr>
<tr>
<td>72h</td>
<td>1.00</td>
</tr>
</tbody>
</table>

CVA-21

<table>
<thead>
<tr>
<th>Hours post-CAVATAK administration</th>
<th>Normalised gene fold changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3h</td>
<td>1.50</td>
</tr>
<tr>
<td>6h</td>
<td>2.00</td>
</tr>
<tr>
<td>24h</td>
<td>2.50</td>
</tr>
<tr>
<td>72h</td>
<td>3.00</td>
</tr>
</tbody>
</table>

Tumor CVA21 replication

<table>
<thead>
<tr>
<th>Time post-CAVATAK administration (h)</th>
<th>Normalised gene fold changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3h</td>
<td>1.00</td>
</tr>
<tr>
<td>6h</td>
<td>1.00</td>
</tr>
<tr>
<td>24h</td>
<td>1.00</td>
</tr>
<tr>
<td>72h</td>
<td>1.00</td>
</tr>
</tbody>
</table>

CXCL10

- Saline: Normalised gene fold changes from 3h to 72h remain constant at 1.00.
- CVA-21: Normalised gene fold changes increase from 3h to 72h, reaching 3.00.

PD-L1

- Saline: Normalised gene fold changes from 3h to 72h remain constant at 1.00.
- CVA-21: Normalised gene fold changes increase from 3h to 72h, reaching 3.00.

- Tumor CVA21 replication over time post-CAVATAK administration.
CVA21: Oncolytic immunotherapeutic modes of action in combination therapy
Pre-clinical: Intravenous CVA21 and checkpoint blockade (anti-PD-1) in an immune-competent mouse NSCLC (3LL) model

Tail vein injection 3LL-hICAM-1 cells

Treatment iv CVA21 or saline + ip anti-PD-1 or control mAb

Observation: Sacrifice ≥ 20% weight loss or labored breathing

Day 0

7 10 13 16

3LL-hICAM-1 cells (i.v tail vein)

CVA21

anti-PD-1 mAb

* 3LL-ICAM-1 cells are murine NSCLC 3LL cells stably transfected to express human ICAM-1 to allow CAVATAK binding and cell infection
Preclinical: Combination of intravenous CVA21 and immune checkpoint antibody blockade (anti-m-PD-1): survival

Kaplan-Meier Survival analysis*

- **Control Ab + Saline**
- **Control Ab + CVA21**

*P = NS

- **anti-m-PD-1 + Saline**
- **anti-m-PD-1 + CVA21**

**P = 0.0033

*P = 0.0201

*n=10, sacrifice ≥ 20% weight loss or labored breathing
Part A / CVA21 (Monotherapy)

Advanced melanoma, prostate, NSCLC or bladder cancer, sero-negative

CVA21 days 1,3,5,22,43,64,85,106,127,148

Cohort 1
1 x 10^8 TCID_{50}
n=3

Cohort 2
3 x 10^8 TCID_{50}
n=3

Cohort 3
1 x 10^9 TCID_{50}
Mandatory lesion biopsy (Day 8) Melanoma, NSCLC, Bladder And Prostate cancer n=3 each

No DLT’s

Part B / CVA21 + pembrolizumab (Combination)

CVA21 days 1,3,5,8,29,50,71,92,113,134,155 + pembrolizumab (200mg) every 3 weeks starting Day 8

Cohort 1 (n=3)
NSCLC or bladder cancer
CVA21 (1 x 10^8 TCID_{50}) + pembrolizumab

Cohort 2 (n=3)
NSCLC or bladder cancer
CVA21 (3 x 10^8 TCID_{50}) + pembrolizumab

Cohort 3 (n=3)
NSCLC or bladder cancer
CVA21 (1 x 10^9 TCID_{50}) + pembrolizumab

Cohort Expansion
NSCLC (~n=40)
CVA21 (1 x 10^8 TCID_{50}) + pembrolizumab

Cohort Expansion
Bladder CA (~n=40)
CVA21 (1 x 10^9 TCID_{50}) + pembrolizumab
KEYNOTE-200 key inclusion criteria

- **Part A**: Histologically-confirmed (1) NSCLC, (2) bladder cancer, (3) castrate-resistant prostate cancer (CRPC) which are metastatic, or (4) Stage IIIC or Stage IV melanoma.

- **Part B**: Histologically or cytologically-confirmed advanced (1) NSCLC, (2) urothelial carcinoma.

- **Part A**: All subjects in Cohort 3 or P2D cohort must have a lesion accessible for FNA or core biopsy or open biopsy on Day 8 of the first treatment cycle.

- **Part B**: All subjects in Cohort 3 or P2D cohort must have either archival tissue available or a lesion accessible for mandatory core biopsy or open biopsy prior to treatment. Day 15 biopsy is requested but optional

- ECOG Performance Scale 0-1 **Part B (Part A: 0-2)**.

- Life expectancy >3 months.

- Measureable disease based on RECIST 1.1.
Primary Objectives

Part A
- To determine if CVA21 given intravenously is capable of tracking to malignant tumors.
- To establish a safe dose schedule of CVA21 for subsequent Phase 2 clinical trials.
- To describe the safety profile for intravenously-administered CVA21.

Part B
- To assess and describe the safety profile of intravenous CVA21 and intravenous pembrolizumab in solid tumors of metastatic bladder cancer and NSCLC.
- To assess efficacy of the combination of CVA21 and intravenous pembrolizumab in solid tumors of metastatic bladder cancer and NSCLC.
KEYNOTE-200 Part A: CVA21 monotherapy: treatment-related adverse events

<table>
<thead>
<tr>
<th></th>
<th>Related to CVA21 n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 1</td>
</tr>
<tr>
<td>Fatigue</td>
<td>3 (17%)</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>4 (22%)</td>
</tr>
<tr>
<td>Flu-like illness</td>
<td>2 (11%)</td>
</tr>
<tr>
<td>Lethargy</td>
<td>3 (17%)</td>
</tr>
<tr>
<td>Headache</td>
<td></td>
</tr>
<tr>
<td>Abdominal distension</td>
<td>1 (6%)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>1 (6%)</td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>1 (6%)</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>1 (6%)</td>
</tr>
<tr>
<td>Myalgia</td>
<td>1 (6%)</td>
</tr>
<tr>
<td>Dry skin</td>
<td>1 (6%)</td>
</tr>
</tbody>
</table>
KEYNOTE-200 Part A: CVA21 monotherapy: dose escalation – increasing levels of systemic exposure*

AUC 48 hours post-infusion (CVA21 RNA copies/ml serum)

Cohort 1: 10^8TCID$_{50}$

Cohort 2: 3×10^8TCID$_{50}$

Cohort 3: 10^9TCID$_{50}$

*Area under the curve (AUC) exposure over 48hr following the first infusion of CVA21
KEYNOTE-200 Part A: Systemic CVA21 monotherapy tumor targeting at day 8 post-viral administration – Cohort 3*

- **Day 8 biopsy from Cohort 3 patients administered three infusions of 10^9TCID$_{50}$ of CVA21**

- **Prostate cancer**
 - Bone
 - Lymph Node

- **Melanoma**
 - Soft tissue, chest
 - Thigh
 - Liver

- **NSCLC**
 - Lung
 - Chest Wall

- **Bladder cancer**
 - Iliac node
 - Abdominal Wall

<table>
<thead>
<tr>
<th>Patient Number</th>
<th>CVA21 RNA copies/mg tumour RNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-005</td>
<td>Bone</td>
</tr>
<tr>
<td>01-006</td>
<td>Bone</td>
</tr>
<tr>
<td>03-005</td>
<td>Lymph Node</td>
</tr>
<tr>
<td>02-005</td>
<td></td>
</tr>
<tr>
<td>03-006</td>
<td></td>
</tr>
<tr>
<td>02-007</td>
<td></td>
</tr>
<tr>
<td>01-010</td>
<td></td>
</tr>
<tr>
<td>03-012</td>
<td></td>
</tr>
<tr>
<td>01-011</td>
<td></td>
</tr>
<tr>
<td>01-009</td>
<td></td>
</tr>
</tbody>
</table>

Limit of detection (1500 copies/mg RNA)
KEYNOTE-200 Part A: CVA21 monotherapy tumor targeting: biopsy viral protein staining* (day 8) – cohort 3, melanoma

*Day 8 biopsy from Cohort 3 patients administered three infusions of 10⁹ TCID₅₀ of CVA21

*irRECIST criteria: Preliminary data, investigator assessed
+First response assessment at Day 42
KEYNOTE-200 Part A: CVA21 monotherapy: Evidence of potential secondary replication – serum CVA21 levels 48-72hr post-infusion
CVA21 monotherapy single-dose and multi-dose pharmacokinetics: serum neutralizing antibody development

Single IV dose (Phase 1)

- **Pt 204**
- **Pt 015**
- **Pt 206**
- **Pt 016**

Multi IV dose (KEYNOTE 200)

- **03-001**
- **03-002**
- **02-001**
- **02-002**
- **02-003**
- **01-001**

Robust window for multi-IV dosing
Conclusions: KEYNOTE-200 Part A: CVA21 monotherapy

- Enrolment complete

- IV delivery of CVA21 was generally well tolerated
 - no grade 3 or 4 related AE’s with a median of 6 CVA21 infusions per patient
 - no dose-limiting toxicities

- CVA21 tumor targeting in patients with melanoma, NSCLC and bladder cancer patients in Cohort 3 was confirmed
 - detection of CVA21 viral RNA in tumor biopsies at study day 8
 - viral replication by IHC in melanoma tumor biopsies

- Of the 15 patients from Cohorts 1-3 eligible for investigator best overall response assessment, 1 PR, 10 SD and 4 PD were observed

- Serum viral loads suggest potential secondary viral replication events
KEYNOTE-200 Part B: CVA21 in combination with pembrolizumab

- **Cohort 1 (n=3)**
 - NSCLC or bladder cancer
 - CVA21 \(1 \times 10^8 \text{ TCID}_{50}\)
 - pembrolizumab
 - Recruitment complete

- **Cohort 2 (n=3)**
 - NSCLC or bladder cancer
 - CVA21 \(3 \times 10^8 \text{ TCID}_{50}\)
 - pembrolizumab
 - Recruitment complete

- **Cohort 3 (n=3)**
 - NSCLC or bladder cancer
 - CVA21 \(1 \times 10^9 \text{ TCID}_{50}\)
 - pembrolizumab
 - Recruitment complete

- **No DLT’s**

- **Cohort Expansion**
 - NSCLC (\(\sim n=40\) +/- prior checkpoint)
 - CVA21 \(1 \times 10^9 \text{ TCID}_{50}\)
 - pembrolizumab

- **Cohort Expansion**
 - Bladder CA (\(\sim n=40\) +/- prior checkpoint)
 - CVA21 \(1 \times 10^9 \text{ TCID}_{50}\)
 - pembrolizumab

- **Recruitment complete**

IV CVA21 days 1,3,5,8,29,50,71,92,113,134,155 + IV pembrolizumab (200mg) every 3 weeks starting Day 8
KEYNOTE-200 Part B: treatment-related adverse events*

<table>
<thead>
<tr>
<th>N=10</th>
<th>Related to CVA21 n(%)</th>
<th>Related to Pembrolizumab n(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 1</td>
<td>Grade 2</td>
</tr>
<tr>
<td>Fatigue</td>
<td>3 (30%)</td>
<td></td>
</tr>
<tr>
<td>Nausea</td>
<td>2 (20%)</td>
<td>1 (10%)</td>
</tr>
<tr>
<td>Pyrexia</td>
<td>3 (30%)</td>
<td></td>
</tr>
<tr>
<td>Myalgia</td>
<td>2 (20%)</td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>2 (20%)</td>
<td></td>
</tr>
<tr>
<td>Hypotension</td>
<td>1 (10%)</td>
<td></td>
</tr>
<tr>
<td>Diarrhea</td>
<td>1 (10%)</td>
<td></td>
</tr>
<tr>
<td>Dizziness</td>
<td>2 (20%)</td>
<td></td>
</tr>
<tr>
<td>Vomiting</td>
<td>1 (10%)</td>
<td></td>
</tr>
<tr>
<td>Constipation</td>
<td>1 (10%)</td>
<td></td>
</tr>
<tr>
<td>Chills</td>
<td>1 (10%)</td>
<td></td>
</tr>
<tr>
<td>Hyponatremia</td>
<td></td>
<td>1 (10%)</td>
</tr>
<tr>
<td>Flu-like illness</td>
<td>1 (10%)</td>
<td></td>
</tr>
<tr>
<td>Malaise</td>
<td>1 (10%)</td>
<td></td>
</tr>
</tbody>
</table>

*Adverse events reported to date

*No DLT’s reported
KEYNOTE-200 Part B: patient characteristics

<table>
<thead>
<tr>
<th>Cohort</th>
<th>CVA21 Dose (TCID<sub>50</sub>)</th>
<th>Patient No.</th>
<th>Tumor Type</th>
<th>Age</th>
<th>Gender</th>
<th>Prior Therapy</th>
<th>Response (Day)*</th>
<th>CVA21 Doses</th>
<th>Pembrolizumab Doses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 x 10<sup>8</sup></td>
<td>12001</td>
<td>NSCLC</td>
<td>67</td>
<td>M</td>
<td>surgery (2), chemotherapy (5), radiotherapy</td>
<td>PD (Day 114)</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15001</td>
<td>Bladder</td>
<td>73</td>
<td>M</td>
<td>surgery (11), chemotherapy (2), radiotherapy (2)</td>
<td>PD (Day 118)</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15002</td>
<td>Bladder</td>
<td>58</td>
<td>M</td>
<td>surgery (3), chemotherapy (2)</td>
<td>PD (Day 83)</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>3 x 10<sup>8</sup></td>
<td>15003</td>
<td>NSCLC</td>
<td>62</td>
<td>M</td>
<td>surgery, chemotherapy (2), radiotherapy</td>
<td>PD (Day 92)</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15004</td>
<td>Bladder</td>
<td>68</td>
<td>F</td>
<td>surgery (4), chemotherapy (2), immunotherapy (BCG, atezolizumab), other</td>
<td>Withdrawn due to unrelated grade 3 sepsis (Day 19)</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12002</td>
<td>NSCLC</td>
<td>76</td>
<td>F</td>
<td>chemotherapy (2), radiotherapy</td>
<td>Withdrew consent (Day 25)</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1 x 10<sup>9</sup></td>
<td>13002</td>
<td>Bladder</td>
<td>80</td>
<td>M</td>
<td>surgery (13), radiotherapy, chemotherapy (5), immunotherapy (BCG, atezolizumab)</td>
<td>PD (Day 29)</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12003</td>
<td>NSCLC</td>
<td>66</td>
<td>M</td>
<td>chemotherapy (2), radiotherapy (2), immunotherapy (anti-B7H3, anti-PDL1, ipilimumab, nivolumab)</td>
<td>ongoing (Day 44)</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15005</td>
<td>NSCLC</td>
<td>81</td>
<td>M</td>
<td>chemotherapy, immunotherapy (nivolumab)</td>
<td>ongoing (Day 21)</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15006</td>
<td>Bladder</td>
<td>61</td>
<td>M</td>
<td>chemotherapy, surgery (2)</td>
<td>ongoing (Day 15)</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

*First response assessment at Day 92; **Clinical progression only
KEYNOTE-200: Relative kinetics of anti-viral responses to CVA21 – serum neutralizing antibody

Part A: CVA21

Part B: CVA21 + pembrolizumab

Reciprocal Log_{10} anti-CVA21 neutralising antibody titer

Study Days
Conclusions: KEYNOTE-200 Parts A and B

- Enrollment in Part A (monotherapy) is complete with no DLTs observed
- Successful systemic CVA21 tumor targeting and findings of potential secondary CVA21 replication (Part A)
- Evidence of tumor stabilization and response (Part A)
- At present, the combination of intravenous CVA21 and pembrolizumab (Part B) has been generally well-tolerated in heavily pre-treated patients with or without prior immune checkpoint therapy
- Enrollment in Part B (combination) Cohorts 1, 2 and 3 complete. Expansion cohort currently recruiting
- One grade 3 CVA21-related hyponatremia with no DLT for the combination of CVA21 and pembrolizumab
- Comparable host anti-CVA21 immune responses in the presence or absence of pembrolizumab
- Intravenous delivery of CVA21 is able to target metastatic lesions with the potential to up-regulate PD-L1 expression during the viral replication process
Acknowledgments

• The investigators, patients, and study staff who are contributing to this study;

• Viralytics R&D and clinical teams

• Support for this study was provided by
 • Viralytics Ltd.
 • Merck & Co.